4,572 research outputs found

    On Interference Alignment and the Deterministic Capacity for Cellular Channels with Weak Symmetric Cross Links

    Full text link
    In this paper, we study the uplink of a cellular system using the linear deterministic approximation model, where there are two users transmitting to a receiver, mutually interfering with a third transmitter communicating with a second receiver. We give an achievable coding scheme and prove its optimality, i.e. characterize the capacity region. This scheme is a form of interference alignment which exploits the channel gain difference of the two-user cell.Comment: Submitted to IEEE International Symposium on Information Theory (ISIT) 2011, 5 page

    Flaw-tolerance in silk fibrils explains strength, extensibility and toughness of spider silk

    Get PDF
    Silk is an ancient but remarkably strong, extensible and tough material made from simple protein building blocks. Earlier work has shown that the particular molecular geometry of silk with a composite of semi-amorphous and nanocrystalline beta-sheet protein domains provides the structural basis for its characteristic softening-stiffening behavior and remarkable strength at the nanoscale. Yet, an open question remains as to how these nanoscale properties are upscaled so effectively to create strong, extensible and tough silk fibers. Here we discover that the geometric confinement of fibrils to ≈50-100 nm width and arranged in bundles to form larger-scale silk fibers, is the key to explaining the upscaling of the mechanical properties of silk from the atomistic scale upwards. We find that under this geometric confinement, hundreds of thousands of protein domains unfold simultaneously and thereby act synergistically to resist deformation and failure, providing access to enhanced large-scale strength, extensibility and toughness. Moreover, since the material is in a flaw-tolerant state under this geometric confinement, structural inhomogeneities such as cavities or tears that typically act as stress concentrators do not compromise the material performance. Indeed, experimental work showed that the diameter of silk fibrils that make up larger-scale silk fibers are on the order of 20-100 nm, in agreement with our findings. The exploitation of this mechanism in engineering design enables the synthesis of hierarchical fiber materials for superior performance despite limited and inferior building blocks

    Hierarchical coexistence of universality and diversity controls robustness and multi-functionality in intermediate filament protein networks

    Get PDF
    Proteins constitute the elementary building blocks of a vast variety of biological materials such as cellular protein networks, spider silk or bone, where they create extremely robust, multi-functional materials by self-organization of structures over many length- and time scales, from nano to macro. Some of the structural features are commonly found in a many different tissues, that is, they are highly conserved. Examples of such universal building blocks include alpha-helices, beta-sheets or tropocollagen molecules. In contrast, other features are highly specific to tissue types, such as particular filament assemblies, beta-sheet nanocrystals in spider silk or tendon fascicles. These examples illustrate that the coexistence of universality and diversity – in the following referred to as the universality-diversity paradigm (UDP) – is an overarching feature in protein materials. This paradigm is a paradox: How can a structure be universal and diverse at the same time? In protein materials, the coexistence of universality and diversity is enabled by utilizing hierarchies, which serve as an additional dimension beyond the 3D or 4D physical space. This may be crucial to understand how their structure and properties are linked, and how these materials are capable of combining seemingly disparate properties such as strength and robustness. Here we illustrate how the UDP enables to unify universal building blocks and highly diversified patterns through formation of hierarchical structures that lead to multi-functional, robust yet highly adapted structures. We illustrate these concepts in an analysis of three types of intermediate filament proteins, including vimentin, lamin and keratin

    Test, Control and Monitor System maintenance plan

    Get PDF
    The maintenance requirements for Test, Control, and Monitor System (TCMS) and the method for satisfying these requirements prior to First Need Date (FND) of the last TCMS set are described. The method for satisfying maintenance requirements following FND of the last TCMS set will be addressed by a revision to this plan. This maintenance plan serves as the basic planning document for maintenance of this equipment by the NASA Payloads Directorate (CM) and the Payload Ground Operations Contractor (PGOC) at KSC. The terms TCMS Operations and Maintenance (O&M), Payloads Logistics, TCMS Sustaining Engineering, Payload Communications, and Integrated Network Services refer to the appropriate NASA and PGOC organization. For the duration of their contract, the Core Electronic Contractor (CEC) will provide a Set Support Team (SST). One of the primary purposes of this team is to help NASA and PGOC operate and maintain TCMS. It is assumed that SST is an integral part of TCMS O&M. The purpose of this plan is to describe the maintenance concept for TCMS hardware and system software in order to facilitate activation, transition planning, and continuing operation. When software maintenance is mentioned in this plan, it refers to maintenance of TCMS system software

    The sensitivity of oceanic precipitation to sea surface temperature

    No full text
    Our study forms the oceanic counterpart to numerous observational studies over land concerning the sensitivity of extreme precipitation to a change in air temperature. We explore the sensitivity of oceanic precipitation to changing sea surface temperature (SST) by exploiting two novel datasets at high resolution. First, we use the Ocean Rainfall And Ice-phase precipitation measurement Network (OceanRAIN) as an observational along-track shipboard dataset at 1 min resolution. Second, we exploit the most recent European Reanalysis version 5 (ERA5) at hourly resolution on a 31 km grid. Matched with each other, ERA5 vertical velocity allows the constraint of the OceanRAIN precipitation. Despite the inhomogeneous sampling along ship tracks, OceanRAIN agrees with ERA5 on the average latitudinal distribution of precipitation with fairly good seasonal sampling. However, the 99th percentile of OceanRAIN precipitation follows a super Clausius–Clapeyron scaling with a SST that exceeds 8.5 % K−1 while ERA5 precipitation scales with 4.5 % K−1. The sensitivity decreases towards lower precipitation percentiles, while OceanRAIN keeps an almost constant offset to ERA5 due to higher spatial resolution and temporal sampling. Unlike over land, we find no evidence for a decreasing precipitation event duration with increasing SST. ERA5 precipitation reaches a local minimum at about 26 ∘C that vanishes when constraining vertical velocity to strongly rising motion and excluding areas of weak correlation between precipitation and vertical velocity. This indicates that instead of moisture limitations as over land, circulation dynamics rather limit precipitation formation over the ocean. For the strongest rising motion, precipitation scaling converges to a constant value at all precipitation percentiles. Overall, high resolutions in observations and climate models are key to understanding and predicting the sensitivity of oceanic precipitation extremes to a change in SST

    Direct measurement of the maximum tunnel rate in a radio frequency single electron transistor operated as a microwave mixer

    Full text link
    By operating the radio frequency single electron transistor (rf-SET) as a mixer we present measurements in which the RC roll-off of the tunnel junctions is observed at high frequencies. Our technique makes use of the non-linear rf-SET transconductance to mix high frequency gate signals and produce difference-frequency components that fall within the bandwidth of the rf-SET. At gate frequencies >15GHz the induced charge on the rf-SET island is altered on time-scales faster than the inverse tunnel rate, preventing mixer operation. We suggest the possibility of utilizing this technique to sense high frequency signals beyond the usual rf-SET bandwidth.Comment: Submitted to Applied Physics Letters. Comments always very welcome, email:[email protected] (New version contains extra data and new figs

    Hierarchical nanomechanics of collagen microfibrils

    Get PDF
    Collagen constitutes one third of the human proteome, providing mechanical stability, elasticity and strength to connective tissues. Collagen is also the dominating material in the extracellular matrix (ECM) and is thus crucial for cell differentiation, growth and pathology. However, fundamental questions remain with respect to the origin of the unique mechanical properties of collagenous tissues, and in particular its stiffness, extensibility and nonlinear mechanical response. By using x-ray diffraction data of a collagen fibril reported by Orgel et al. (Proceedings of the National Academy of Sciences USA, 2006) in combination with protein structure identification methods, here we present an experimentally validated model of the nanomechanics of a collagen microfibril that incorporates the full biochemical details of the amino acid sequence of the constituting molecules. We report the analysis of its mechanical properties under different levels of stress and solvent conditions, using a full-atomistic force field including explicit water solvent. Mechanical testing of hydrated collagen microfibrils yields a Young’s modulus of ≈300 MPa at small and ≈1.2 GPa at larger deformation in excess of 10% strain, in excellent agreement with experimental data. Dehydrated, dry collagen microfibrils show a significantly increased Young’s modulus of ≈1.8 to 2.25 GPa (or ≈6.75 times the modulus in the wet state) owing to a much tighter molecular packing, in good agreement with experimental measurements (where an increase of the modulus by ≈9 times was found). Our model demonstrates that the unique mechanical properties of collagen microfibrils can be explained based on their hierarchical structure, where deformation is mediated through mechanisms that operate at different hierarchical levels. Key mechanisms involve straightening of initially disordered and helically twisted molecules at small strains, followed by axial stretching of molecules, and eventual molecular uncoiling at extreme deformation. These mechanisms explain the striking difference of the modulus of collagen fibrils compared with single molecules, which is found in the range of 4.8±2 GPa or ≈10-20 times greater. These findings corroborate the notion that collagen tissue properties are highly scale dependent and nonlinear elastic, an issue that must be considered in the development of models that describe the interaction of cells with collagen in the extracellular matrix. A key impact the atomistic model of collagen microfibril mechanics reported here is that it enables the bottom-up elucidation of structure-property relationships in the broader class of collagen materials such as tendon or bone, including studies in the context of genetic disease where the incorporation of biochemical, genetic details in material models of connective tissue is essential

    Molecular Modeling and Mechanics of Acrylic Adhesives on a Graphene Substrate with Roughness

    Get PDF
    Understanding the mechanics of amorphous polymeric adhesives on a solid substrate at the fundamental scale level is critical for designing and optimizing the mechanics of composite materials. Using molecular dynamics simulations, we investigate the interfacial strength between graphene and polyacrylic and discuss how the surface roughness of graphene affects the interfacial strength in different loading directions. Our results show that a single angstrom increase in graphene roughness can lead to almost eight times higher shear strength, and that such result is insensitive to compression. We have also revealed that the graphene roughness has modest effect on tensile strength of the interface. Our simulations elucidate the molecular mechanism of these different effects in different loading conditions and provide insights for composite designs.Henkel Corporatio

    Materials by design—A perspective from atoms to structures

    Get PDF
    Biological materials are effectively synthesized, controlled, and used for a variety of purposes in Nature—in spite of limitations in energy, quality, and quantity of their building blocks. Whereas the chemical composition of materials in the living world plays some role in achieving functional properties, the way components are connected at different length scales defines what material properties can be achieved, how they can be altered to meet functional requirements, and how they fail in disease states and other extreme conditions. Recent work has demonstrated this using large-scale computer simulations to predict materials properties from fundamental molecular principles, combined with experimental work and new mathematical techniques to categorize complex structure-property relationships into a systematic framework. Enabled by such categorization, we discuss opportunities based on the exploitation of concepts from distinct hierarchical systems that share common principles in how function is created, even linking music to materials science.National Science Foundation (U.S.) (CAREER 0642545)United States. Office of Naval Research (PECASE N00014-10-1-0562)United States. Air Force Office of Scientific Research (FA9550-11-1-0199)National Institutes of Health (U.S.) (U01 EB014976
    • …
    corecore